Cargando…
Tracking the Chemical Evolution of Iodine Species Using Recurrent Neural Networks
[Image: see text] We apply recurrent neural networks (RNNs) to predict the time evolution of the concentration profile of multiple species resulting from a set of interconnected chemical reactions. As a proof of concept of our approach, RNNs were trained on a synthetic dataset generated by solving t...
Autores principales: | Bilbrey, Jenna A., Marrero, Carlos Ortiz, Sassi, Michel, Ritzmann, Andrew M., Henson, Neil J., Schram, Malachi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066558/ https://www.ncbi.nlm.nih.gov/pubmed/32175505 http://dx.doi.org/10.1021/acsomega.9b04104 |
Ejemplares similares
-
Decoding the protein–ligand interactions using parallel graph neural networks
por: Knutson, Carter, et al.
Publicado: (2022) -
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
por: Wang, Mingyi, et al.
Publicado: (2021) -
Performance of the ATLAS forward calorimeter and search for the invisible Higgs via vector boson fusion at ATLAS
por: Schram, Malachi
Publicado: (2008) -
CHEMICAL EXPOSURES: More Iodine or Less Perchlorate?
por: Renner, Rebecca
Publicado: (2010) -
Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation
por: Boscolo, Daria, et al.
Publicado: (2020)