Cargando…
Mechanical properties of metal–organic frameworks
As the field of metal–organic frameworks (MOFs) continues to grow, the physical stability and mechanical properties of these porous materials has become a topic of great interest. While strategies for synthesizing MOFs with desirable chemical functionalities or pore sizes have been established over...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066669/ https://www.ncbi.nlm.nih.gov/pubmed/32190239 http://dx.doi.org/10.1039/c9sc04249k |
_version_ | 1783505289067102208 |
---|---|
author | Redfern, Louis R. Farha, Omar K. |
author_facet | Redfern, Louis R. Farha, Omar K. |
author_sort | Redfern, Louis R. |
collection | PubMed |
description | As the field of metal–organic frameworks (MOFs) continues to grow, the physical stability and mechanical properties of these porous materials has become a topic of great interest. While strategies for synthesizing MOFs with desirable chemical functionalities or pore sizes have been established over the past twenty years, design principles to modulate the response of MOFs to mechanical stress are still underdeveloped. The inherent porosity of these frameworks results in many interesting and sometimes unexpected phenomena upon exposure to elevated pressures and other physical stimuli. Beyond its fundamental importance, an understanding of mechanical properties (e.g. bulk modulus, shear modulus, Young's modulus, linear compressibility, and Poisson's ratio) plays an essential role in the post-synthetic processing of MOFs, which has implications in the successful transition of these materials from academic interest to industrial relevance. This perspective provides a concise overview of the efforts to understand the mechanical properties of MOFs through experimental and computational methods. Additionally, current limitations and possible future directions for the field are also discussed briefly. |
format | Online Article Text |
id | pubmed-7066669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-70666692020-03-18 Mechanical properties of metal–organic frameworks Redfern, Louis R. Farha, Omar K. Chem Sci Chemistry As the field of metal–organic frameworks (MOFs) continues to grow, the physical stability and mechanical properties of these porous materials has become a topic of great interest. While strategies for synthesizing MOFs with desirable chemical functionalities or pore sizes have been established over the past twenty years, design principles to modulate the response of MOFs to mechanical stress are still underdeveloped. The inherent porosity of these frameworks results in many interesting and sometimes unexpected phenomena upon exposure to elevated pressures and other physical stimuli. Beyond its fundamental importance, an understanding of mechanical properties (e.g. bulk modulus, shear modulus, Young's modulus, linear compressibility, and Poisson's ratio) plays an essential role in the post-synthetic processing of MOFs, which has implications in the successful transition of these materials from academic interest to industrial relevance. This perspective provides a concise overview of the efforts to understand the mechanical properties of MOFs through experimental and computational methods. Additionally, current limitations and possible future directions for the field are also discussed briefly. Royal Society of Chemistry 2019-10-17 /pmc/articles/PMC7066669/ /pubmed/32190239 http://dx.doi.org/10.1039/c9sc04249k Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Redfern, Louis R. Farha, Omar K. Mechanical properties of metal–organic frameworks |
title | Mechanical properties of metal–organic frameworks |
title_full | Mechanical properties of metal–organic frameworks |
title_fullStr | Mechanical properties of metal–organic frameworks |
title_full_unstemmed | Mechanical properties of metal–organic frameworks |
title_short | Mechanical properties of metal–organic frameworks |
title_sort | mechanical properties of metal–organic frameworks |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066669/ https://www.ncbi.nlm.nih.gov/pubmed/32190239 http://dx.doi.org/10.1039/c9sc04249k |
work_keys_str_mv | AT redfernlouisr mechanicalpropertiesofmetalorganicframeworks AT farhaomark mechanicalpropertiesofmetalorganicframeworks |