Cargando…

CT brain image advancement for ICH diagnosis

A critical step in detection of primary intracerebral haemorrhage (ICH) is an accurate assessment of computed tomography (CT) brain images. The correct diagnosis relies on imaging modality and quality of acquired images. The authors present an enhancement algorithm which can improve the clarity of e...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaik Amir, Nor Shahirah, Kang, Law Zhe, Mukari, Shahizon Azura, Sahathevan, Ramesh, Chellappan, Kalaivani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Institution of Engineering and Technology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067058/
https://www.ncbi.nlm.nih.gov/pubmed/32190334
http://dx.doi.org/10.1049/htl.2018.5003
Descripción
Sumario:A critical step in detection of primary intracerebral haemorrhage (ICH) is an accurate assessment of computed tomography (CT) brain images. The correct diagnosis relies on imaging modality and quality of acquired images. The authors present an enhancement algorithm which can improve the clarity of edges on CT images. About 40 samples of CT brain images with final diagnosis of primary ICH were obtained from the UKM Medical Centre in Digital Imaging and Communication in Medicine format. The images resized from 512 × 512 to 256 × 256 pixel resolution to reduce processing time. This Letter comprises of two main sections; the first is denoising using Wiener filter, non-local means and wavelet; the second section focuses on image enhancement using a modified unsharp masking (UM) algorithm to improve the visualisation of ICH. The combined approach of Wiener filter and modified UM algorithm outperforms other combinations with average values of mean square error, peak signal-to-noise ratio, variance and structural similarity index of 2.89, 31.72, 0.12 and 0.98, respectively. The reliability of proposed algorithm was evaluated by three blinded assessors which achieved a median score of 65%. This approach provides reliable validation for the proposed algorithm which has potential in improving image analysis.