Cargando…
Constrained Bayesian optimization for automatic chemical design using variational autoencoders
Automatic Chemical Design is a framework for generating novel molecules with optimized properties. The original scheme, featuring Bayesian optimization over the latent space of a variational autoencoder, suffers from the pathology that it tends to produce invalid molecular structures. First, we demo...
Autores principales: | Griffiths, Ryan-Rhys, Hernández-Lobato, José Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067240/ https://www.ncbi.nlm.nih.gov/pubmed/32190274 http://dx.doi.org/10.1039/c9sc04026a |
Ejemplares similares
-
Deep generative design of porous organic cages via a variational autoencoder
por: Zhou, Jiajun, et al.
Publicado: (2023) -
Autonomous design of new chemical reactions using a variational autoencoder
por: Tempke, Robert, et al.
Publicado: (2022) -
Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules
por: Gómez-Bombarelli, Rafael, et al.
Publicado: (2018) -
The Optimally Designed Variational Autoencoder Networks for Clustering and Recovery of Incomplete Multimedia Data
por: Yu, Xiulan, et al.
Publicado: (2019) -
Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization
por: Choong, Jun Jin, et al.
Publicado: (2020)