Cargando…
A characterization of seminormal C-monoids
It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal...
Autores principales: | Geroldinger, Alfred, Zhong, Qinghai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067257/ https://www.ncbi.nlm.nih.gov/pubmed/32215192 http://dx.doi.org/10.1007/s40574-019-00194-9 |
Ejemplares similares
-
On strongly primary monoids and domains
por: Geroldinger, Alfred, et al.
Publicado: (2020) -
On transfer homomorphisms of Krull monoids
por: Geroldinger, Alfred, et al.
Publicado: (2021) -
Products of two atoms in Krull monoids and arithmetical characterizations of class groups()
por: Baginski, Paul, et al.
Publicado: (2013) -
Seminormal operators
por: Clancey, Kevin
Publicado: (1979) -
A characterization of finite abelian groups via sets of lengths in transfer Krull monoids
por: Zhong, Qinghai
Publicado: (2018)