Cargando…
The Neuroprotective Effects of Exercise on Cognitive Decline: A Preventive Approach to Alzheimer Disease
Alzheimer's disease (AD) is a progressive disorder that causes brain cells to slowly degenerate and die. This leads to a continuous decline in thinking, behavioral and social skills that disrupts a person's ability to function independently. AD is the most common cause of dementia globally...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067577/ https://www.ncbi.nlm.nih.gov/pubmed/32190507 http://dx.doi.org/10.7759/cureus.6958 |
Sumario: | Alzheimer's disease (AD) is a progressive disorder that causes brain cells to slowly degenerate and die. This leads to a continuous decline in thinking, behavioral and social skills that disrupts a person's ability to function independently. AD is the most common cause of dementia globally. Neuroinflammation caused by intracellular neurofibrillary tangles and extracellular amyloid deposits leads to atrophy of brain cells especially the hippocampus, which is associated with memory formation. This atrophy leads to dementia and cognitive decline. Among the many preventive factors being studied, exercise is thought to play a vital role in not only preventing the pre-clinical stage of AD but also slowing the clinical progression of AD. It is also deployed as a treatment option for late-stage AD along with pharmacological treatment options. Various studies and clinical trials in both human and animal models are of the opinion that exercise slows the onset and progression of cognitive decline in AD patients. Some studies suggest that this effect is due to a decrease in neurofibrillary tangles and amyloid deposits in brain parenchyma. Others suggest that exercise causes an increase in angiogenesis, neurogenesis, and synaptogenesis mainly due to an increase in blood flow, brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), hormones, and second messengers. |
---|