Cargando…
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
PURPOSE: Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. METHODS: A systematic search was performed in Pu...
Autores principales: | Fleuren, Lucas M., Klausch, Thomas L. T., Zwager, Charlotte L., Schoonmade, Linda J., Guo, Tingjie, Roggeveen, Luca F., Swart, Eleonora L., Girbes, Armand R. J., Thoral, Patrick, Ercole, Ari, Hoogendoorn, Mark, Elbers, Paul W. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067741/ https://www.ncbi.nlm.nih.gov/pubmed/31965266 http://dx.doi.org/10.1007/s00134-019-05872-y |
Ejemplares similares
-
Right Dose Right Now: bedside data-driven personalized antibiotic dosing in severe sepsis and septic shock — rationale and design of a multicenter randomized controlled superiority trial
por: Roggeveen, Luca F., et al.
Publicado: (2019) -
Right dose, right now: bedside, real-time, data-driven, and personalised antibiotic dosing in critically ill patients with sepsis or septic shock—a two-centre randomised clinical trial
por: Roggeveen, Luca F., et al.
Publicado: (2022) -
Right Dose, Right Now: Development of AutoKinetics for Real Time Model Informed Precision Antibiotic Dosing Decision Support at the Bedside of Critically Ill Patients
por: Roggeveen, Luca F., et al.
Publicado: (2020) -
Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient: a cross-sectional study
por: Fleuren, Lucas M., et al.
Publicado: (2019) -
Evolution of Clinical Phenotypes of COVID-19 Patients During Intensive Care Treatment: An Unsupervised Machine Learning Analysis
por: Siepel, Sander, et al.
Publicado: (2023)