Cargando…
Forecasting risk gene discovery in autism with machine learning and genome-scale data
Genetics has been one of the most powerful windows into the biology of autism spectrum disorder (ASD). It is estimated that a thousand or more genes may confer risk for ASD when functionally perturbed, however, only around 100 genes currently have sufficient evidence to be considered true “autism ri...
Autores principales: | Brueggeman, Leo, Koomar, Tanner, Michaelson, Jacob J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067874/ https://www.ncbi.nlm.nih.gov/pubmed/32165711 http://dx.doi.org/10.1038/s41598-020-61288-5 |
Ejemplares similares
-
Author Correction: Forecasting risk gene discovery in autism with machine learning and genome-scale data
por: Brueggeman, Leo, et al.
Publicado: (2020) -
Whole-genome sequencing in a family with twin boys with autism and intellectual disability suggests multimodal polygenic risk
por: McKenna, Brooke, et al.
Publicado: (2018) -
cerebroViz: an R package for anatomical visualization of spatiotemporal brain data
por: Bahl, Ethan, et al.
Publicado: (2017) -
Estimating the Prevalence and Genetic Risk Mechanisms of ARFID in a Large Autism Cohort
por: Koomar, Tanner, et al.
Publicado: (2021) -
Clinical autism subscales have common genetic liabilities that are heritable, pleiotropic, and generalizable to the general population
por: Thomas, Taylor R., et al.
Publicado: (2022)