Cargando…
Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions
Semiconductor/Faradaic layer/liquid junctions have been widely used in solar energy conversion and storage devices. However, the charge transfer mechanism of these junctions is still unclear, which leads to inconsistent results and low performance of these devices in previous studies. Herein, by usi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068125/ https://www.ncbi.nlm.nih.gov/pubmed/32179473 http://dx.doi.org/10.1016/j.isci.2020.100949 |
_version_ | 1783505512181006336 |
---|---|
author | Chen, Xiangtian Zhu, Kaijian Wang, Pin Sun, Gengzhi Yao, Yingfang Luo, Wenjun Zou, Zhigang |
author_facet | Chen, Xiangtian Zhu, Kaijian Wang, Pin Sun, Gengzhi Yao, Yingfang Luo, Wenjun Zou, Zhigang |
author_sort | Chen, Xiangtian |
collection | PubMed |
description | Semiconductor/Faradaic layer/liquid junctions have been widely used in solar energy conversion and storage devices. However, the charge transfer mechanism of these junctions is still unclear, which leads to inconsistent results and low performance of these devices in previous studies. Herein, by using Fe(2)O(3) and Ni(OH)(2) as models, we precisely control the interface structure between the semiconductor and the Faradaic layer and investigate the charge transfer mechanism in the semiconductor/Faradaic layer/liquid junction. The results suggest that the short circuit severely restricts the performance of the junction for both solar water splitting cells and solar charging supercapacitors. More importantly, we also find that the charge-discharge potential window of a Faradaic material sensitively depends on the energy band positions of a semiconductor, which provides a new way to adjust the potential window of a Faradaic material. These new insights offer guidance to design high-performance devices for solar energy conversion and storage. |
format | Online Article Text |
id | pubmed-7068125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-70681252020-03-18 Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions Chen, Xiangtian Zhu, Kaijian Wang, Pin Sun, Gengzhi Yao, Yingfang Luo, Wenjun Zou, Zhigang iScience Article Semiconductor/Faradaic layer/liquid junctions have been widely used in solar energy conversion and storage devices. However, the charge transfer mechanism of these junctions is still unclear, which leads to inconsistent results and low performance of these devices in previous studies. Herein, by using Fe(2)O(3) and Ni(OH)(2) as models, we precisely control the interface structure between the semiconductor and the Faradaic layer and investigate the charge transfer mechanism in the semiconductor/Faradaic layer/liquid junction. The results suggest that the short circuit severely restricts the performance of the junction for both solar water splitting cells and solar charging supercapacitors. More importantly, we also find that the charge-discharge potential window of a Faradaic material sensitively depends on the energy band positions of a semiconductor, which provides a new way to adjust the potential window of a Faradaic material. These new insights offer guidance to design high-performance devices for solar energy conversion and storage. Elsevier 2020-02-28 /pmc/articles/PMC7068125/ /pubmed/32179473 http://dx.doi.org/10.1016/j.isci.2020.100949 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Chen, Xiangtian Zhu, Kaijian Wang, Pin Sun, Gengzhi Yao, Yingfang Luo, Wenjun Zou, Zhigang Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title_full | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title_fullStr | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title_full_unstemmed | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title_short | Reversible Charge Transfer and Adjustable Potential Window in Semiconductor/Faradaic Layer/Liquid Junctions |
title_sort | reversible charge transfer and adjustable potential window in semiconductor/faradaic layer/liquid junctions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068125/ https://www.ncbi.nlm.nih.gov/pubmed/32179473 http://dx.doi.org/10.1016/j.isci.2020.100949 |
work_keys_str_mv | AT chenxiangtian reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT zhukaijian reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT wangpin reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT sungengzhi reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT yaoyingfang reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT luowenjun reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions AT zouzhigang reversiblechargetransferandadjustablepotentialwindowinsemiconductorfaradaiclayerliquidjunctions |