Cargando…
Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging
IMPORTANCE: Predicting infarct size and location is important for decision-making and prognosis in patients with acute stroke. OBJECTIVES: To determine whether a deep learning model can predict final infarct lesions using magnetic resonance images (MRIs) acquired at initial presentation (baseline) a...
Autores principales: | Yu, Yannan, Xie, Yuan, Thamm, Thoralf, Gong, Enhao, Ouyang, Jiahong, Huang, Charles, Christensen, Soren, Marks, Michael P., Lansberg, Maarten G., Albers, Gregory W., Zaharchuk, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068232/ https://www.ncbi.nlm.nih.gov/pubmed/32163165 http://dx.doi.org/10.1001/jamanetworkopen.2020.0772 |
Ejemplares similares
-
Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network
por: Nazari-Farsani, Sanaz, et al.
Publicado: (2022) -
Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge
por: Hakim, Arsany, et al.
Publicado: (2021) -
Association Between Intravenous Thrombolysis and Clinical Outcomes Among Patients With Ischemic Stroke and Unsuccessful Mechanical Reperfusion
por: Faizy, Tobias D., et al.
Publicado: (2023) -
Evaluation of Systolic Blood Pressure, Use of Aspirin and Clopidogrel, and Stroke Recurrence in the Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke Trial
por: de Havenon, Adam, et al.
Publicado: (2021) -
Ordinal Prediction Model of 90-Day Modified Rankin Scale in Ischemic Stroke
por: Zhang, Michelle Y., et al.
Publicado: (2021)