Cargando…
Calculation and Evaluation of Carbon Footprint in Mulberry Production: A Case of Haining in China
Carbon footprint refers to the greenhouse gas emissions of an activity during the whole life cycle or a specific period of time. Mulberry is an important cash crop. Thus, establishing a standardized accounting method for the carbon footprint of mulberry production and analyzing its carbon emission s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068300/ https://www.ncbi.nlm.nih.gov/pubmed/32092957 http://dx.doi.org/10.3390/ijerph17041339 |
Sumario: | Carbon footprint refers to the greenhouse gas emissions of an activity during the whole life cycle or a specific period of time. Mulberry is an important cash crop. Thus, establishing a standardized accounting method for the carbon footprint of mulberry production and analyzing its carbon emission scenarios is important in correctly understanding the impact of mulberry production on the environment. Using the life cycle assessment method and on the basis of the statistical data of mulberry production of urban farmers in Haining City, China, in 2014–2016, this study calculates and evaluates the carbon footprint of mulberry production. Results show the following. (1) Indirect carbon emissions is the main part of total carbon emissions, accounting for 85%–88% of total carbon emission, and industrial inputs (fertilizers and pesticides) are the main cause of carbon emissions. (2) The total carbon emissions per hectare in 2016 (6550.73 kgce/hm(2)) rose relative to the 2015 data (5617.92 kgce/hm(2) at least in 2014) (5729.64 kgce/hm(2)). The output value of mulberry in spring was greater than that in summer and autumn, and the production efficiency of mulberry carbon in spring was higher than that in summer and autumn. The ecological environment of the mulberry production industry can be improved by increasing the resources of carbon sequestration and reducing the source of production input. (3) In general, the photosynthetic carbon sink of mulberry is greater than the total carbon emission and presents a positive externality to the ecological environment. |
---|