Cargando…

Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model

Accurate prediction of flu activity enables health officials to plan disease prevention and allocate treatment resources. A promising forecasting approach is to adapt the well-established endemic-epidemic modeling framework to time series of infectious disease proportions. Using U.S. influenza-like...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Junyi, Meyer, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068443/
https://www.ncbi.nlm.nih.gov/pubmed/32098038
http://dx.doi.org/10.3390/ijerph17041381
_version_ 1783505581039943680
author Lu, Junyi
Meyer, Sebastian
author_facet Lu, Junyi
Meyer, Sebastian
author_sort Lu, Junyi
collection PubMed
description Accurate prediction of flu activity enables health officials to plan disease prevention and allocate treatment resources. A promising forecasting approach is to adapt the well-established endemic-epidemic modeling framework to time series of infectious disease proportions. Using U.S. influenza-like illness surveillance data over 18 seasons, we assessed probabilistic forecasts of this new beta autoregressive model with proper scoring rules. Other readily available forecasting tools were used for comparison, including Prophet, (S)ARIMA and kernel conditional density estimation (KCDE). Short-term flu activity was equally well predicted up to four weeks ahead by the beta model with four autoregressive lags and by KCDE; however, the beta model runs much faster. Non-dynamic Prophet scored worst. Relative performance differed for seasonal peak prediction. Prophet produced the best peak intensity forecasts in seasons with standard epidemic curves; otherwise, KCDE outperformed all other methods. Peak timing was best predicted by SARIMA, KCDE or the beta model, depending on the season. The best overall performance when predicting peak timing and intensity was achieved by KCDE. Only KCDE and naive historical forecasts consistently outperformed the equal-bin reference approach for all test seasons. We conclude that the endemic-epidemic beta model is a performant and easy-to-implement tool to forecast flu activity a few weeks ahead. Real-time forecasting of the seasonal peak, however, should consider outputs of multiple models simultaneously, weighing their usefulness as the season progresses.
format Online
Article
Text
id pubmed-7068443
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70684432020-03-19 Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model Lu, Junyi Meyer, Sebastian Int J Environ Res Public Health Article Accurate prediction of flu activity enables health officials to plan disease prevention and allocate treatment resources. A promising forecasting approach is to adapt the well-established endemic-epidemic modeling framework to time series of infectious disease proportions. Using U.S. influenza-like illness surveillance data over 18 seasons, we assessed probabilistic forecasts of this new beta autoregressive model with proper scoring rules. Other readily available forecasting tools were used for comparison, including Prophet, (S)ARIMA and kernel conditional density estimation (KCDE). Short-term flu activity was equally well predicted up to four weeks ahead by the beta model with four autoregressive lags and by KCDE; however, the beta model runs much faster. Non-dynamic Prophet scored worst. Relative performance differed for seasonal peak prediction. Prophet produced the best peak intensity forecasts in seasons with standard epidemic curves; otherwise, KCDE outperformed all other methods. Peak timing was best predicted by SARIMA, KCDE or the beta model, depending on the season. The best overall performance when predicting peak timing and intensity was achieved by KCDE. Only KCDE and naive historical forecasts consistently outperformed the equal-bin reference approach for all test seasons. We conclude that the endemic-epidemic beta model is a performant and easy-to-implement tool to forecast flu activity a few weeks ahead. Real-time forecasting of the seasonal peak, however, should consider outputs of multiple models simultaneously, weighing their usefulness as the season progresses. MDPI 2020-02-21 2020-02 /pmc/articles/PMC7068443/ /pubmed/32098038 http://dx.doi.org/10.3390/ijerph17041381 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lu, Junyi
Meyer, Sebastian
Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title_full Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title_fullStr Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title_full_unstemmed Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title_short Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model
title_sort forecasting flu activity in the united states: benchmarking an endemic-epidemic beta model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068443/
https://www.ncbi.nlm.nih.gov/pubmed/32098038
http://dx.doi.org/10.3390/ijerph17041381
work_keys_str_mv AT lujunyi forecastingfluactivityintheunitedstatesbenchmarkinganendemicepidemicbetamodel
AT meyersebastian forecastingfluactivityintheunitedstatesbenchmarkinganendemicepidemicbetamodel