Cargando…
Forest-Scale Phenotyping: Productivity Characterisation Through Machine Learning
Advances in remote sensing combined with the emergence of sophisticated methods for large-scale data analytics from the field of data science provide new methods to model complex interactions in biological systems. Using a data-driven philosophy, insights from experts are used to corroborate the res...
Autores principales: | Bombrun, Maxime, Dash, Jonathan P., Pont, David, Watt, Michael S., Pearse, Grant D., Dungey, Heidi S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068454/ https://www.ncbi.nlm.nih.gov/pubmed/32210980 http://dx.doi.org/10.3389/fpls.2020.00099 |
Ejemplares similares
-
Spatial Models With Inter-Tree Competition From Airborne Laser Scanning Improve Estimates of Genetic Variance
por: Pont, David, et al.
Publicado: (2021) -
Assessing scale‐dependent effects on Forest biomass productivity based on machine learning
por: He, Jingyuan, et al.
Publicado: (2022) -
Genetic Variation for Economically Important Traits in Cupressus lusitanica in New Zealand
por: Ismael, Ahmed, et al.
Publicado: (2021) -
Total and component forest aboveground biomass inversion via LiDAR-derived features and machine learning algorithms
por: Ma, Jiamin, et al.
Publicado: (2023) -
Forest fire monitoring via uncrewed aerial vehicle image processing based on a modified machine learning algorithm
por: Zheng, Shaoxiong, et al.
Publicado: (2022)