Cargando…
Using String Metrics to Improve the Design of Virtual Conversational Characters: Behavior Simulator Development Study
BACKGROUND: An emergency waiting room is a place where conflicts often arise. Nervous relatives in a hostile, unknown environment force security and medical staff to be ready to deal with some awkward situations. Additionally, it has been said that the medical interview is the first diagnostic and t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068461/ https://www.ncbi.nlm.nih.gov/pubmed/32130121 http://dx.doi.org/10.2196/15349 |
Sumario: | BACKGROUND: An emergency waiting room is a place where conflicts often arise. Nervous relatives in a hostile, unknown environment force security and medical staff to be ready to deal with some awkward situations. Additionally, it has been said that the medical interview is the first diagnostic and therapeutic tool, involving both intellectual and emotional skills on the part of the doctor. At the same time, it seems that there is something mysterious about interviewing that cannot be formalized or taught. In this context, virtual conversational characters (VCCs) are progressively present in most e-learning environments. OBJECTIVE: In this study, we propose and develop a modular architecture for a VCC-based behavior simulator to be used as a tool for conflict avoidance training. Our behavior simulators are now being used in hospital environments, where training exercises must be easily designed and tested. METHODS: We define training exercises as labeled, directed graphs that help an instructor in the design of complex training situations. In order to increase the perception of talking to a real person, the simulator must deal with a huge number of sentences that a VCC must understand and react to. These sentences are grouped into sets identified with a common label. Labels are then used to trigger changes in the active node of the graph that encodes the current state of the training exercise. As a consequence, we need to be able to map every sentence said by the human user into the set it belongs to, in a fast and robust way. In this work, we discuss two different existing string metrics, and compare them to one that we use to assess a designed exercise. RESULTS: Based on the similarities found between different sets, the proposed metric provided valuable information about ill-defined exercises. We also described the environment in which our programs are being used and illustrated it with an example. CONCLUSIONS: Initially designed as a tool for training emergency room staff, our software could be of use in many other areas within the same environment. We are currently exploring the possibility of using it in speech therapy situations. |
---|