Cargando…
DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images
BACKGROUND: Melanoma results in the vast majority of skin cancer deaths during the last decades, even though this disease accounts for only one percent of all skin cancers’ instances. The survival rates of melanoma from early to terminal stages is more than fifty percent. Therefore, having the right...
Autores principales: | Nasiri, Sara, Helsper, Julien, Jung, Matthias, Fathi, Madjid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068864/ https://www.ncbi.nlm.nih.gov/pubmed/32164530 http://dx.doi.org/10.1186/s12859-020-3351-y |
Ejemplares similares
-
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Yang, Cheng-Hong, et al.
Publicado: (2021) -
Utilizing convolutional neural networks to classify monkeypox skin lesions
por: Eliwa, Entesar Hamed I., et al.
Publicado: (2023) -
Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network
por: Aldhyani, Theyazn H. H., et al.
Publicado: (2022) -
Deep Convolutional Neural Networks for Classifying Body Constitution Based on Face Image
por: Huan, Er-Yang, et al.
Publicado: (2017) -
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019)