Cargando…
Applications of machine learning for simulations of red blood cells in microfluidic devices
BACKGROUND: For optimization of microfluidic devices for the analysis of blood samples, it is useful to simulate blood cells as elastic objects in flow of blood plasma. In such numerical models, we primarily need to take into consideration the movement and behavior of the dominant component of the b...
Autores principales: | Bachratý, Hynek, Bachratá, Katarína, Chovanec, Michal, Jančigová, Iveta, Smiešková, Monika, Kovalčíková, Kristína |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068868/ https://www.ncbi.nlm.nih.gov/pubmed/32164547 http://dx.doi.org/10.1186/s12859-020-3357-5 |
Ejemplares similares
-
PyOIF: Computational tool for modelling of multi-cell flows in complex geometries
por: Jančigová, Iveta, et al.
Publicado: (2020) -
Modeling Red Blood Cell Viscosity Contrast Using Inner Soft Particle Suspension
por: Bohiniková, Alžbeta, et al.
Publicado: (2021) -
Cell Damage Index as Computational Indicator for Blood Cell Activation and Damage
por: Gusenbauer, Markus, et al.
Publicado: (2018) -
Characterization of red blood cell microcirculatory parameters using a bioimpedance microfluidic device
por: Xu, Tieying, et al.
Publicado: (2020) -
Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements
por: Bento, David, et al.
Publicado: (2018)