Cargando…
Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data
BACKGROUND: Finding the tumor location in the prostate is an essential pathological step for prostate cancer diagnosis and treatment. The location of the tumor – the laterality – can be unilateral (the tumor is affecting one side of the prostate), or bilateral on both sides. Nevertheless, the tumor...
Autores principales: | Hamzeh, Osama, Alkhateeb, Abedalrhman, Zheng, Julia, Kandalam, Srinath, Rueda, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068980/ https://www.ncbi.nlm.nih.gov/pubmed/32164523 http://dx.doi.org/10.1186/s12859-020-3345-9 |
Ejemplares similares
-
A Hierarchical Machine Learning Model to Discover Gleason Grade-Specific Biomarkers in Prostate Cancer
por: Hamzeh, Osama, et al.
Publicado: (2019) -
Zseq: An Approach for Preprocessing Next-Generation Sequencing Data
por: Alkhateeb, Abedalrhman, et al.
Publicado: (2017) -
A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer
por: Tabl, Ashraf Abou, et al.
Publicado: (2019) -
A Fecal-Microbial-Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients
por: Yagin, Fatma Hilal, et al.
Publicado: (2023) -
Transcriptomics Signature from Next-Generation Sequencing Data
Reveals New Transcriptomic Biomarkers Related to Prostate Cancer
por: Alkhateeb, Abedalrhman, et al.
Publicado: (2019)