Cargando…
Rapid Recognition of Field-Grown Wheat Spikes Based on a Superpixel Segmentation Algorithm Using Digital Images
Wheat spike number, which could be rapidly and accurately estimated by the image processing technology, serves as the basis for crop growth monitoring and yield prediction. In this research, simple linear iterative clustering (SLIC) was performed for superpixel segmentation of the digital images of...
Autores principales: | Tan, Changwei, Zhang, Pengpeng, Zhang, Yongjiang, Zhou, Xinxing, Wang, Zhixiang, Du, Ying, Mao, Wei, Li, Wenxi, Wang, Dunliang, Guo, Wenshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069027/ https://www.ncbi.nlm.nih.gov/pubmed/32211011 http://dx.doi.org/10.3389/fpls.2020.00259 |
Ejemplares similares
-
Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm
por: Tan, Changwei, et al.
Publicado: (2020) -
Analysis of Different Hyperspectral Variables for Diagnosing Leaf Nitrogen Accumulation in Wheat
por: Tan, Changwei, et al.
Publicado: (2018) -
Wheat Ear Segmentation Based on a Multisensor System and Superpixel Classification
por: Carlier, Alexis, et al.
Publicado: (2022) -
Remotely Assessing Fraction of Photosynthetically Active Radiation (FPAR) for Wheat Canopies Based on Hyperspectral Vegetation Indexes
por: Tan, Changwei, et al.
Publicado: (2018) -
Electrochemical Intelligent Recognition of Mineral Materials Based on Superpixel Image Segmentation
por: Liu, Weiping, et al.
Publicado: (2022)