Cargando…
Gain-of-function mutation in the voltage-gated potassium channel gene KCNQ1 and glucose-stimulated hypoinsulinemia - case report
BACKGROUND: The voltage-gated potassium channel Kv7.1 encoded by KCNQ1 is located in both cardiac myocytes and insulin producing beta cells. Loss-of-function mutations in KCNQ1 causes long QT syndrome along with glucose-stimulated hyperinsulinemia, increased C-peptide and postprandial hypoglycemia....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069191/ https://www.ncbi.nlm.nih.gov/pubmed/32164657 http://dx.doi.org/10.1186/s12902-020-0513-x |
Sumario: | BACKGROUND: The voltage-gated potassium channel Kv7.1 encoded by KCNQ1 is located in both cardiac myocytes and insulin producing beta cells. Loss-of-function mutations in KCNQ1 causes long QT syndrome along with glucose-stimulated hyperinsulinemia, increased C-peptide and postprandial hypoglycemia. The KCNE1 protein modulates Kv7.1 in cardiac myocytes, but is not expressed in beta cells. Gain-of-function mutations in KCNQ1 and KCNE1 shorten the action potential duration in cardiac myocytes, but their effect on beta cells and insulin secretion is unknown. CASE PRESENTATION: Two patients with atrial fibrillation due to gain-of-function mutations in KCNQ1 (R670K) and KCNE1 (G60D) were BMI-, age-, and sex-matched to six control participants and underwent a 6-h oral glucose tolerance test (OGTT). During the OGTT, the KCNQ1 gain-of-function mutation carrier had 86% lower C-peptide response after glucose stimulation compared with matched control participants (iAUC(360min) = 34 pmol/l*min VS iAUC(360min) = 246 ± 71 pmol/l*min). The KCNE1 gain-of-function mutation carrier had normal C-peptide levels. CONCLUSIONS: This case story presents a patient with a gain-of-function mutation KCNQ1 R670K with low glucose-stimulated C-peptide secretion, additionally suggesting involvement of the voltage-gated potassium channel KCNQ1 in glucose-stimulated insulin regulation. |
---|