Cargando…
A big data approach to metagenomics for all-food-sequencing
BACKGROUND: All-Food-Sequencing (AFS) is an untargeted metagenomic sequencing method that allows for the detection and quantification of food ingredients including animals, plants, and microbiota. While this approach avoids some of the shortcomings of targeted PCR-based methods, it requires the comp...
Autores principales: | Kobus, Robin, Abuín, José M., Müller, André, Hellmann, Sören Lukas, Pichel, Juan C., Pena, Tomás F., Hildebrandt, Andreas, Hankeln, Thomas, Schmidt, Bertil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069206/ https://www.ncbi.nlm.nih.gov/pubmed/32164527 http://dx.doi.org/10.1186/s12859-020-3429-6 |
Ejemplares similares
-
Accelerating metagenomic read classification on CUDA-enabled GPUs
por: Kobus, Robin, et al.
Publicado: (2017) -
RainDrop: Rapid activation matrix computation for droplet-based single-cell RNA-seq reads
por: Niebler, Stefan, et al.
Publicado: (2020) -
Big Data in metagenomics: Apache Spark vs MPI
por: Abuín, José M., et al.
Publicado: (2020) -
MetaTransformer: deep metagenomic sequencing read classification using self-attention models
por: Wichmann, Alexander, et al.
Publicado: (2023) -
rapidGSEA: Speeding up gene set enrichment analysis on multi-core CPUs and CUDA-enabled GPUs
por: Hundt, Christian, et al.
Publicado: (2016)