Cargando…

The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference

Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. The study of such interaction could be more challenging in nuptial gift‐giving species due to the direct nutritional effects on both sexes of both species during...

Descripción completa

Detalles Bibliográficos
Autores principales: Dorková, Martina, Krištín, Anton, Jarčuška, Benjamín, Kaňuch, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069280/
https://www.ncbi.nlm.nih.gov/pubmed/32185002
http://dx.doi.org/10.1002/ece3.6086
_version_ 1783505749894234112
author Dorková, Martina
Krištín, Anton
Jarčuška, Benjamín
Kaňuch, Peter
author_facet Dorková, Martina
Krištín, Anton
Jarčuška, Benjamín
Kaňuch, Peter
author_sort Dorková, Martina
collection PubMed
description Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. The study of such interaction could be more challenging in nuptial gift‐giving species due to the direct nutritional effects on both sexes of both species during copulation. We mapped the distribution of two sister bush‐cricket species, Pholidoptera aptera and Pholidoptera transsylvanica, at the northern margin of their overlapping ranges in Europe, and with a behavioral experiment, we tested the possibility of heterospecific mating. We found a very rare coexistence of species locally (0.5%, n = 391 sites) with mostly mutually exclusive distribution patterns, resulting in a mosaic pattern of sympatry, whereas they occupied the same climate niche in forest‐dominated mountain landscape. Over 14 days of a mating experiment with seven mixed groups of conspecifics and heterospecifics (n = 56 individuals in total), the number of received spermatophores per female was 3–6 in P. aptera and 1–7 in P. transsylvanica. In total, we found 8.1% of heterospecific copulations (n = 99 transferred spermatophores with genetic identification of the donor species), while we also confirmed successful transfer of heterospecific sperms into a female's reproductive system. Because bush‐cricket females also obtain required nutrition from a heterospecific spermatophylax what should increase their fitness and fecundity, we suggest that their flexibility to mate with heterospecifics is beneficial and drives reproductive interference. This may substantially limit the reproductive success of the less frequent species (P. transsylvanica), coupled with eventual detrimental effects from hybridization, and result in the competitive exclusion of that species from their areas of coexistence.
format Online
Article
Text
id pubmed-7069280
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-70692802020-03-17 The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference Dorková, Martina Krištín, Anton Jarčuška, Benjamín Kaňuch, Peter Ecol Evol Original Research Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. The study of such interaction could be more challenging in nuptial gift‐giving species due to the direct nutritional effects on both sexes of both species during copulation. We mapped the distribution of two sister bush‐cricket species, Pholidoptera aptera and Pholidoptera transsylvanica, at the northern margin of their overlapping ranges in Europe, and with a behavioral experiment, we tested the possibility of heterospecific mating. We found a very rare coexistence of species locally (0.5%, n = 391 sites) with mostly mutually exclusive distribution patterns, resulting in a mosaic pattern of sympatry, whereas they occupied the same climate niche in forest‐dominated mountain landscape. Over 14 days of a mating experiment with seven mixed groups of conspecifics and heterospecifics (n = 56 individuals in total), the number of received spermatophores per female was 3–6 in P. aptera and 1–7 in P. transsylvanica. In total, we found 8.1% of heterospecific copulations (n = 99 transferred spermatophores with genetic identification of the donor species), while we also confirmed successful transfer of heterospecific sperms into a female's reproductive system. Because bush‐cricket females also obtain required nutrition from a heterospecific spermatophylax what should increase their fitness and fecundity, we suggest that their flexibility to mate with heterospecifics is beneficial and drives reproductive interference. This may substantially limit the reproductive success of the less frequent species (P. transsylvanica), coupled with eventual detrimental effects from hybridization, and result in the competitive exclusion of that species from their areas of coexistence. John Wiley and Sons Inc. 2020-02-08 /pmc/articles/PMC7069280/ /pubmed/32185002 http://dx.doi.org/10.1002/ece3.6086 Text en © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Dorková, Martina
Krištín, Anton
Jarčuška, Benjamín
Kaňuch, Peter
The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title_full The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title_fullStr The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title_full_unstemmed The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title_short The mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
title_sort mosaic distribution pattern of two sister bush‐cricket species and the possible role of reproductive interference
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069280/
https://www.ncbi.nlm.nih.gov/pubmed/32185002
http://dx.doi.org/10.1002/ece3.6086
work_keys_str_mv AT dorkovamartina themosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT kristinanton themosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT jarcuskabenjamin themosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT kanuchpeter themosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT dorkovamartina mosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT kristinanton mosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT jarcuskabenjamin mosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference
AT kanuchpeter mosaicdistributionpatternoftwosisterbushcricketspeciesandthepossibleroleofreproductiveinterference