Cargando…

Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region

Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil des...

Descripción completa

Detalles Bibliográficos
Autores principales: Ning, Jiao, He, Xiong Z., Hou, Fujiang, Lou, Shanning, Chen, Xianjiang, Chang, Shenghua, Zhang, Cheng, Zhu, Wanhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069402/
https://www.ncbi.nlm.nih.gov/pubmed/32195058
http://dx.doi.org/10.7717/peerj.8738
_version_ 1783505771868192768
author Ning, Jiao
He, Xiong Z.
Hou, Fujiang
Lou, Shanning
Chen, Xianjiang
Chang, Shenghua
Zhang, Cheng
Zhu, Wanhe
author_facet Ning, Jiao
He, Xiong Z.
Hou, Fujiang
Lou, Shanning
Chen, Xianjiang
Chang, Shenghua
Zhang, Cheng
Zhu, Wanhe
author_sort Ning, Jiao
collection PubMed
description Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil desiccation. The objectives of this study were (1) to determine the alfalfa forage yield, soil property (soil temperature (ST), soil water content (SWC), soil organic carbon (SOC) and soil total nitrogen (STN)) and greenhouse gas (GHG: methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2))) emissions affected by alfalfa stand age and growing season, (2) to investigate the effects of soil property on GHG emissions, and (3) to optimize the alfalfa stand age by integrating the two standard criteria, the forage yield and water use efficiency, and the total GHG efflux (CO(2)-eq). This study was performed in alfalfa fields of different ages (2, 3, 5 and 7 year old) during the growing season (from April to October) in a typical salinized meadow with temperate continental arid climate in the Northwest inland regions, China. Despite its higher total GHG efflux (CO(2)-eq), the greater forage yield and water use efficiency with lower GEIhay and high CH(4) uptake in the 5-year alfalfa stand suggested an optimal alfalfa stand age of 5 years. Results show that ST, SOC and RBM alone had positive effects (except RBM had no significant effect on CH(4) effluxes), but SWC and STN alone had negative effects on GHG fluxes. Furthermore, results demonstrate that in arid regions SWC superseded ST, SOC, STN and RBM as a key factor regulating GHG fluxes, and soil water stress may have led to a net uptake of CH(4) by soils and a reduction of N(2)O and CO(2) effluxes from alfalfa fields. Our study has provided insights into the determination of alfalfa stand age and the understanding of mechanisms regulating GHG fluxes in alfalfa fields in the continental arid regions. This knowledge is essential to decide the alfalfa retention time by considering the hay yield, water use efficiency as well as GHG emission.
format Online
Article
Text
id pubmed-7069402
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-70694022020-03-19 Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region Ning, Jiao He, Xiong Z. Hou, Fujiang Lou, Shanning Chen, Xianjiang Chang, Shenghua Zhang, Cheng Zhu, Wanhe PeerJ Agricultural Science Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil desiccation. The objectives of this study were (1) to determine the alfalfa forage yield, soil property (soil temperature (ST), soil water content (SWC), soil organic carbon (SOC) and soil total nitrogen (STN)) and greenhouse gas (GHG: methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2))) emissions affected by alfalfa stand age and growing season, (2) to investigate the effects of soil property on GHG emissions, and (3) to optimize the alfalfa stand age by integrating the two standard criteria, the forage yield and water use efficiency, and the total GHG efflux (CO(2)-eq). This study was performed in alfalfa fields of different ages (2, 3, 5 and 7 year old) during the growing season (from April to October) in a typical salinized meadow with temperate continental arid climate in the Northwest inland regions, China. Despite its higher total GHG efflux (CO(2)-eq), the greater forage yield and water use efficiency with lower GEIhay and high CH(4) uptake in the 5-year alfalfa stand suggested an optimal alfalfa stand age of 5 years. Results show that ST, SOC and RBM alone had positive effects (except RBM had no significant effect on CH(4) effluxes), but SWC and STN alone had negative effects on GHG fluxes. Furthermore, results demonstrate that in arid regions SWC superseded ST, SOC, STN and RBM as a key factor regulating GHG fluxes, and soil water stress may have led to a net uptake of CH(4) by soils and a reduction of N(2)O and CO(2) effluxes from alfalfa fields. Our study has provided insights into the determination of alfalfa stand age and the understanding of mechanisms regulating GHG fluxes in alfalfa fields in the continental arid regions. This knowledge is essential to decide the alfalfa retention time by considering the hay yield, water use efficiency as well as GHG emission. PeerJ Inc. 2020-03-10 /pmc/articles/PMC7069402/ /pubmed/32195058 http://dx.doi.org/10.7717/peerj.8738 Text en ©2020 Ning et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Agricultural Science
Ning, Jiao
He, Xiong Z.
Hou, Fujiang
Lou, Shanning
Chen, Xianjiang
Chang, Shenghua
Zhang, Cheng
Zhu, Wanhe
Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title_full Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title_fullStr Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title_full_unstemmed Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title_short Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
title_sort optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region
topic Agricultural Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069402/
https://www.ncbi.nlm.nih.gov/pubmed/32195058
http://dx.doi.org/10.7717/peerj.8738
work_keys_str_mv AT ningjiao optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT hexiongz optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT houfujiang optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT loushanning optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT chenxianjiang optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT changshenghua optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT zhangcheng optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion
AT zhuwanhe optimizingalfalfaproductivityandpersistenceversusgreenhousegasesfluxesinacontinentalaridregion