Cargando…

Lysyl hydroxylase 3 increases collagen deposition and promotes pulmonary fibrosis by activating TGFβ1/Smad3 and Wnt/β-catenin pathways

INTRODUCTION: Lysyl hydroxylase 3 (LH3) is a collagen post-translational modifying enzyme; it is abnormally activated during the formation of collagen cross-links. iCRT3 is an inhibitor of both Wnt and β-catenin responsive transcription. We hypothesized that LH3 is regulated by TGFβ1/Smad3 signaling...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Songjun, Fang, Haiyan, Duan, Lindi, Ye, Xianwei, Rao, Shanshan, Han, Jin, Li, Yumei, Yuan, Guohang, Liu, Weijia, Zhang, Xiangyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069430/
https://www.ncbi.nlm.nih.gov/pubmed/32190155
http://dx.doi.org/10.5114/aoms.2018.81357
Descripción
Sumario:INTRODUCTION: Lysyl hydroxylase 3 (LH3) is a collagen post-translational modifying enzyme; it is abnormally activated during the formation of collagen cross-links. iCRT3 is an inhibitor of both Wnt and β-catenin responsive transcription. We hypothesized that LH3 is regulated by TGFβ1/Smad3 signaling and Wnt/β-catenin signaling pathways. Some evidence suggested that there is complicated cross-talk between the two signal pathways in the genesis of pulmonary fibrosis. MATERIAL AND METHODS: The normal culturing human lung cancer cell line A549 was derived from pulmonary epithelial cells. Transforming growth factor-β1 (TGF-β1) was induced A549 cells of pulmonary fibrosis. MTT assays detected cell growth stimulation by TGF-β1; collagen pyridine-crosslinking contents were detected by ELISA kits. Immunofluorescence were used to evaluate expression of key molecules in PLOD3 (LH3), Wnt/β-catenin and TGFβ1/Smad3 pathways. RESULTS: Our findings suggested that iCRT3 could decrease LH3 protein expression (p < 0.01), Wnt1, β-catenin and p-Smad3 protein expression (p < 0.05). Knock-down PLOD3 could decrease LH3, collagen I gene and protein expression (p < 0.05). These effects were associated with decreasing collagen pyridine-crosslinking production (p < 0.05). However, ovexpression PLOD3 could increase LH3, collagen I gene and protein expression (p < 0.05). The result showed that LH3 plays an important role in collagen post-translational modifications, and it is regulated by Wnt/β-catenin and TGFβ1/Smad3 pathways. CONCLUSIONS: This study suggests that PLOD3 (LH3) represents a target to prevent pulmonary fibrosis.