Cargando…
Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting
We study the optimal design of numerical integrators for dissipative systems, for which there exists an underlying thermodynamic structure known as GENERIC (general equation for the nonequilibrium reversible–irreversible coupling). We present a frame-work to construct structure-preserving integrator...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069487/ https://www.ncbi.nlm.nih.gov/pubmed/32201474 http://dx.doi.org/10.1098/rspa.2019.0446 |
_version_ | 1783505789455958016 |
---|---|
author | Shang, Xiaocheng Öttinger, Hans Christian |
author_facet | Shang, Xiaocheng Öttinger, Hans Christian |
author_sort | Shang, Xiaocheng |
collection | PubMed |
description | We study the optimal design of numerical integrators for dissipative systems, for which there exists an underlying thermodynamic structure known as GENERIC (general equation for the nonequilibrium reversible–irreversible coupling). We present a frame-work to construct structure-preserving integrators by splitting the system into reversible and irreversible dynamics. The reversible part, which is often degenerate and reduces to a Hamiltonian form on its symplectic leaves, is solved by using a symplectic method (e.g. Verlet) with degenerate variables being left unchanged, for which an associated modified Hamiltonian (and subsequently a modified energy) in the form of a series expansion can be obtained by using backward error analysis. The modified energy is then used to construct a modified friction matrix associated with the irreversible part in such a way that a modified degeneracy condition is satisfied. The modified irreversible dynamics can be further solved by an explicit midpoint method if not exactly solvable. Our findings are verified by various numerical experiments, demonstrating the superiority of structure-preserving integrators over alternative schemes in terms of not only the accuracy control of both energy conservation and entropy production but also the preservation of the conformal symplectic structure in the case of linearly damped systems. |
format | Online Article Text |
id | pubmed-7069487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-70694872020-03-20 Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting Shang, Xiaocheng Öttinger, Hans Christian Proc Math Phys Eng Sci Research Article We study the optimal design of numerical integrators for dissipative systems, for which there exists an underlying thermodynamic structure known as GENERIC (general equation for the nonequilibrium reversible–irreversible coupling). We present a frame-work to construct structure-preserving integrators by splitting the system into reversible and irreversible dynamics. The reversible part, which is often degenerate and reduces to a Hamiltonian form on its symplectic leaves, is solved by using a symplectic method (e.g. Verlet) with degenerate variables being left unchanged, for which an associated modified Hamiltonian (and subsequently a modified energy) in the form of a series expansion can be obtained by using backward error analysis. The modified energy is then used to construct a modified friction matrix associated with the irreversible part in such a way that a modified degeneracy condition is satisfied. The modified irreversible dynamics can be further solved by an explicit midpoint method if not exactly solvable. Our findings are verified by various numerical experiments, demonstrating the superiority of structure-preserving integrators over alternative schemes in terms of not only the accuracy control of both energy conservation and entropy production but also the preservation of the conformal symplectic structure in the case of linearly damped systems. The Royal Society Publishing 2020-02 2020-02-12 /pmc/articles/PMC7069487/ /pubmed/32201474 http://dx.doi.org/10.1098/rspa.2019.0446 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Article Shang, Xiaocheng Öttinger, Hans Christian Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title | Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title_full | Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title_fullStr | Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title_full_unstemmed | Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title_short | Structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
title_sort | structure-preserving integrators for dissipative systems based on reversible– irreversible splitting |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069487/ https://www.ncbi.nlm.nih.gov/pubmed/32201474 http://dx.doi.org/10.1098/rspa.2019.0446 |
work_keys_str_mv | AT shangxiaocheng structurepreservingintegratorsfordissipativesystemsbasedonreversibleirreversiblesplitting AT ottingerhanschristian structurepreservingintegratorsfordissipativesystemsbasedonreversibleirreversiblesplitting |