Cargando…

Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli

PURPOSE: The emergence of plasmid-mediated quinolone resistance (PMQR) is a global challenge in the treatment of clinical disease in both humans and animals and is exacerbated by the presence of different PMQR genes existing in the same bacterial strain. Here, we discovered that a natural isoquinoli...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Peng, Hu, Longfei, Hao, Zhihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069587/
https://www.ncbi.nlm.nih.gov/pubmed/32210589
http://dx.doi.org/10.2147/IDR.S242304
_version_ 1783505806765850624
author Wang, Peng
Hu, Longfei
Hao, Zhihui
author_facet Wang, Peng
Hu, Longfei
Hao, Zhihui
author_sort Wang, Peng
collection PubMed
description PURPOSE: The emergence of plasmid-mediated quinolone resistance (PMQR) is a global challenge in the treatment of clinical disease in both humans and animals and is exacerbated by the presence of different PMQR genes existing in the same bacterial strain. Here, we discovered that a natural isoquinoline alkaloid palmatine extracted from traditional Chinese medicinal plants effectively inhibited the activity of PMQR proteins QnrS and AAC(6′)-Ib-cr. METHODS: In total 120 clinical ciprofloxacin-resistant Escherichia coli (E. coli) were screened for the presence of qnrS and aac(6ʹ)-Ib-cr by PCR. Recombinant E. coli that produced QnrS or AAC(6ʹ)-Ib-cr proteins were constructed and the correct expression was confirmed by MALDI/TOF MS analysis and SDS-PAGE. A minimal inhibitory concentration (MICs) assay, growth curve assay and time-kill assay were conducted to evaluate the in vitro antibacterial activity of palmatine and the combination of palmatine and ciprofloxacin. Cytotoxicity assays and mouse thigh infection model were used to evaluate the in vivo synergies. Molecular docking, gyrase supercoiling assay and acetylation assay were used to clarify the mechanism of action. RESULTS: Palmatine effectively restored the activity of ciprofloxacin against qnrS and aac(6ʹ)-Ib-cr-positive E. coli strains in a synergistic manner in vitro. In addition, the combined therapy significantly reduced the bacterial burden in a mouse thigh infection model. Molecular docking revealed that palmatine bound at the functional large loop B of QnrS and Trp102Arg and Asp179Tyr in the binding pocket of AAC(6′)-Ib-cr. Furthermore, interaction analysis confirmed that palmatine reduced the gyrase protective effect of QnrS and the acetylation effect of AAC(6′)-Ib-cr. CONCLUSION: Our findings suggest that palmatine is a potential efficacious compound to restore PMQR-mediated ciprofloxacin resistance and warrants further preclinical evaluations.
format Online
Article
Text
id pubmed-7069587
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-70695872020-03-24 Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli Wang, Peng Hu, Longfei Hao, Zhihui Infect Drug Resist Original Research PURPOSE: The emergence of plasmid-mediated quinolone resistance (PMQR) is a global challenge in the treatment of clinical disease in both humans and animals and is exacerbated by the presence of different PMQR genes existing in the same bacterial strain. Here, we discovered that a natural isoquinoline alkaloid palmatine extracted from traditional Chinese medicinal plants effectively inhibited the activity of PMQR proteins QnrS and AAC(6′)-Ib-cr. METHODS: In total 120 clinical ciprofloxacin-resistant Escherichia coli (E. coli) were screened for the presence of qnrS and aac(6ʹ)-Ib-cr by PCR. Recombinant E. coli that produced QnrS or AAC(6ʹ)-Ib-cr proteins were constructed and the correct expression was confirmed by MALDI/TOF MS analysis and SDS-PAGE. A minimal inhibitory concentration (MICs) assay, growth curve assay and time-kill assay were conducted to evaluate the in vitro antibacterial activity of palmatine and the combination of palmatine and ciprofloxacin. Cytotoxicity assays and mouse thigh infection model were used to evaluate the in vivo synergies. Molecular docking, gyrase supercoiling assay and acetylation assay were used to clarify the mechanism of action. RESULTS: Palmatine effectively restored the activity of ciprofloxacin against qnrS and aac(6ʹ)-Ib-cr-positive E. coli strains in a synergistic manner in vitro. In addition, the combined therapy significantly reduced the bacterial burden in a mouse thigh infection model. Molecular docking revealed that palmatine bound at the functional large loop B of QnrS and Trp102Arg and Asp179Tyr in the binding pocket of AAC(6′)-Ib-cr. Furthermore, interaction analysis confirmed that palmatine reduced the gyrase protective effect of QnrS and the acetylation effect of AAC(6′)-Ib-cr. CONCLUSION: Our findings suggest that palmatine is a potential efficacious compound to restore PMQR-mediated ciprofloxacin resistance and warrants further preclinical evaluations. Dove 2020-03-09 /pmc/articles/PMC7069587/ /pubmed/32210589 http://dx.doi.org/10.2147/IDR.S242304 Text en © 2020 Wang et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Wang, Peng
Hu, Longfei
Hao, Zhihui
Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title_full Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title_fullStr Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title_full_unstemmed Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title_short Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6ʹ)-Ib-cr-Producing Escherichia coli
title_sort palmatine is a plasmid-mediated quinolone resistance (pmqr) inhibitor that restores the activity of ciprofloxacin against qnrs and aac(6ʹ)-ib-cr-producing escherichia coli
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069587/
https://www.ncbi.nlm.nih.gov/pubmed/32210589
http://dx.doi.org/10.2147/IDR.S242304
work_keys_str_mv AT wangpeng palmatineisaplasmidmediatedquinoloneresistancepmqrinhibitorthatrestorestheactivityofciprofloxacinagainstqnrsandaac6ʹibcrproducingescherichiacoli
AT hulongfei palmatineisaplasmidmediatedquinoloneresistancepmqrinhibitorthatrestorestheactivityofciprofloxacinagainstqnrsandaac6ʹibcrproducingescherichiacoli
AT haozhihui palmatineisaplasmidmediatedquinoloneresistancepmqrinhibitorthatrestorestheactivityofciprofloxacinagainstqnrsandaac6ʹibcrproducingescherichiacoli