Cargando…
Learning supervised embeddings for large scale sequence comparisons
Similarity-based search of sequence collections is a core task in bioinformatics, one dominated for most of the genomic era by exact and heuristic alignment-based algorithms. However, even efficient heuristics such as BLAST may not scale to the data sets now emerging, motivating a range of alignment...
Autores principales: | Kimothi, Dhananjay, Biyani, Pravesh, Hogan, James M., Soni, Akshay, Kelly, Wayne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069636/ https://www.ncbi.nlm.nih.gov/pubmed/32168338 http://dx.doi.org/10.1371/journal.pone.0216636 |
Ejemplares similares
-
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
por: Fernandes, Kelwin, et al.
Publicado: (2018) -
Semi-Supervised Learning in Medical Images Through Graph-Embedded Random Forest
por: Gu, Lin, et al.
Publicado: (2020) -
Large-Scale Tactile Detection System Based on Supervised Learning for Service Robots Human Interaction
por: Cunha, Fábio, et al.
Publicado: (2023) -
Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation
por: Wei, Chao, et al.
Publicado: (2016) -
Large-scale sequence comparisons with
sourmash
por: Pierce, N. Tessa, et al.
Publicado: (2019)