Cargando…

NMR resonance assignments for the active and inactive conformations of the small G protein RalA

The Ral proteins (RalA and RalB) are small G proteins of the Ras family that have been implicated in exocytosis, endocytosis, transcriptional regulation and mitochondrial fission, as well as having a role in tumourigenesis. RalA and RalB are activated downstream of the master regulator, Ras, which c...

Descripción completa

Detalles Bibliográficos
Autores principales: Shafiq, Arooj, Campbell, Louise J., Owen, Darerca, Mott, Helen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069931/
https://www.ncbi.nlm.nih.gov/pubmed/31916136
http://dx.doi.org/10.1007/s12104-019-09925-7
Descripción
Sumario:The Ral proteins (RalA and RalB) are small G proteins of the Ras family that have been implicated in exocytosis, endocytosis, transcriptional regulation and mitochondrial fission, as well as having a role in tumourigenesis. RalA and RalB are activated downstream of the master regulator, Ras, which causes the nucleotide exchange of GDP for GTP. Here we report the (1)H, (15) N and (13)C resonance assignments of RalA in its active form bound to the GTP analogue GMPPNP. We also report the backbone assignments of RalA in its inactive, GDP-bound form. The assignments give insight into the switch regions, which change conformation upon nucleotide exchange. These switch regions are invisible in the spectra of the active, GMPPNP bound form but the residues proximal to the switches can be monitored. RalA is also an important drug target due to its over activation in some cancers and these assignments will be extremely useful for NMR-based screening approaches.