Cargando…
Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning
Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate prognostic stratification of NSCLC can become an important clinical reference when designing therapeutic strategies for cancer patients. With this clinical application in mind, we developed a deep neural ne...
Autores principales: | Lai, Yu-Heng, Chen, Wei-Ning, Hsu, Te-Cheng, Lin, Che, Tsao, Yu, Wu, Semon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069964/ https://www.ncbi.nlm.nih.gov/pubmed/32170141 http://dx.doi.org/10.1038/s41598-020-61588-w |
Ejemplares similares
-
Radiomics-Based Deep Learning Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography
por: Hou, Kuei-Yuan, et al.
Publicado: (2022) -
Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2022) -
Development and validation of a deep transfer learning-based multivariable survival model to predict overall survival in lung cancer
por: Zhu, Feng, et al.
Publicado: (2023) -
Nomograms integrating CT radiomic and deep learning signatures to predict overall survival and progression-free survival in NSCLC patients treated with chemotherapy
por: Chang, Runsheng, et al.
Publicado: (2023) -
Author Correction: Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset
por: Braghetto, Anna, et al.
Publicado: (2023)