Cargando…
Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping
Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery sy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070030/ https://www.ncbi.nlm.nih.gov/pubmed/32170079 http://dx.doi.org/10.1038/s41467-020-14957-y |
_version_ | 1783505892438704128 |
---|---|
author | Gee, Peter Lung, Mandy S. Y. Okuzaki, Yuya Sasakawa, Noriko Iguchi, Takahiro Makita, Yukimasa Hozumi, Hiroyuki Miura, Yasutomo Yang, Lucy F. Iwasaki, Mio Wang, Xiou H. Waller, Matthew A. Shirai, Nanako Abe, Yasuko O. Fujita, Yoko Watanabe, Kei Kagita, Akihiro Iwabuchi, Kumiko A. Yasuda, Masahiko Xu, Huaigeng Noda, Takeshi Komano, Jun Sakurai, Hidetoshi Inukai, Naoto Hotta, Akitsu |
author_facet | Gee, Peter Lung, Mandy S. Y. Okuzaki, Yuya Sasakawa, Noriko Iguchi, Takahiro Makita, Yukimasa Hozumi, Hiroyuki Miura, Yasutomo Yang, Lucy F. Iwasaki, Mio Wang, Xiou H. Waller, Matthew A. Shirai, Nanako Abe, Yasuko O. Fujita, Yoko Watanabe, Kei Kagita, Akihiro Iwabuchi, Kumiko A. Yasuda, Masahiko Xu, Huaigeng Noda, Takeshi Komano, Jun Sakurai, Hidetoshi Inukai, Naoto Hotta, Akitsu |
author_sort | Gee, Peter |
collection | PubMed |
description | Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond. |
format | Online Article Text |
id | pubmed-7070030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70700302020-03-18 Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping Gee, Peter Lung, Mandy S. Y. Okuzaki, Yuya Sasakawa, Noriko Iguchi, Takahiro Makita, Yukimasa Hozumi, Hiroyuki Miura, Yasutomo Yang, Lucy F. Iwasaki, Mio Wang, Xiou H. Waller, Matthew A. Shirai, Nanako Abe, Yasuko O. Fujita, Yoko Watanabe, Kei Kagita, Akihiro Iwabuchi, Kumiko A. Yasuda, Masahiko Xu, Huaigeng Noda, Takeshi Komano, Jun Sakurai, Hidetoshi Inukai, Naoto Hotta, Akitsu Nat Commun Article Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond. Nature Publishing Group UK 2020-03-13 /pmc/articles/PMC7070030/ /pubmed/32170079 http://dx.doi.org/10.1038/s41467-020-14957-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Gee, Peter Lung, Mandy S. Y. Okuzaki, Yuya Sasakawa, Noriko Iguchi, Takahiro Makita, Yukimasa Hozumi, Hiroyuki Miura, Yasutomo Yang, Lucy F. Iwasaki, Mio Wang, Xiou H. Waller, Matthew A. Shirai, Nanako Abe, Yasuko O. Fujita, Yoko Watanabe, Kei Kagita, Akihiro Iwabuchi, Kumiko A. Yasuda, Masahiko Xu, Huaigeng Noda, Takeshi Komano, Jun Sakurai, Hidetoshi Inukai, Naoto Hotta, Akitsu Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title_full | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title_fullStr | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title_full_unstemmed | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title_short | Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping |
title_sort | extracellular nanovesicles for packaging of crispr-cas9 protein and sgrna to induce therapeutic exon skipping |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070030/ https://www.ncbi.nlm.nih.gov/pubmed/32170079 http://dx.doi.org/10.1038/s41467-020-14957-y |
work_keys_str_mv | AT geepeter extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT lungmandysy extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT okuzakiyuya extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT sasakawanoriko extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT iguchitakahiro extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT makitayukimasa extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT hozumihiroyuki extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT miurayasutomo extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT yanglucyf extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT iwasakimio extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT wangxiouh extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT wallermatthewa extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT shirainanako extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT abeyasukoo extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT fujitayoko extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT watanabekei extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT kagitaakihiro extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT iwabuchikumikoa extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT yasudamasahiko extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT xuhuaigeng extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT nodatakeshi extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT komanojun extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT sakuraihidetoshi extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT inukainaoto extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping AT hottaakitsu extracellularnanovesiclesforpackagingofcrisprcas9proteinandsgrnatoinducetherapeuticexonskipping |