Cargando…
A learning based framework for diverse biomolecule relationship prediction in molecular association network
Abundant life activities are maintained by various biomolecule relationships in human cells. However, many previous computational models only focus on isolated objects, without considering that cell is a complete entity with ample functions. Inspired by holism, we constructed a Molecular Association...
Autores principales: | Guo, Zhen-Hao, You, Zhu-Hong, Huang, De-Shuang, Yi, Hai-Cheng, Chen, Zhan-Heng, Wang, Yan-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070057/ https://www.ncbi.nlm.nih.gov/pubmed/32170157 http://dx.doi.org/10.1038/s42003-020-0858-8 |
Ejemplares similares
-
Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities
por: Guo, Zhen-Hao, et al.
Publicado: (2020) -
Models and algorithms for biomolecules and molecular networks
por: DasGupta, Bhaskar, et al.
Publicado: (2016) -
Prediction of Drug–Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model
por: Chen, Zhan-Heng, et al.
Publicado: (2020) -
Learning Representations to Predict Intermolecular Interactions on Large-Scale Heterogeneous Molecular Association Network
por: Yi, Hai-Cheng, et al.
Publicado: (2020) -
A Learning-Based Method for LncRNA-Disease Association Identification Combing Similarity Information and Rotation Forest
por: Guo, Zhen-Hao, et al.
Publicado: (2019)