Cargando…

Ecosystem-wide metagenomic binning enables prediction of ecological niches from genomes

The genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gra...

Descripción completa

Detalles Bibliográficos
Autores principales: Alneberg, Johannes, Bennke, Christin, Beier, Sara, Bunse, Carina, Quince, Christopher, Ininbergs, Karolina, Riemann, Lasse, Ekman, Martin, Jürgens, Klaus, Labrenz, Matthias, Pinhassi, Jarone, Andersson, Anders F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070063/
https://www.ncbi.nlm.nih.gov/pubmed/32170201
http://dx.doi.org/10.1038/s42003-020-0856-x
Descripción
Sumario:The genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-assembled genomes represent 352 species-level clusters that correspond to 1/3 of the metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the placement of a genome cluster along various niche gradients (salinity level, depth, size-fraction) could be predicted based solely on its functional genes. The same approach predicted the genomes’ placement in a virtual niche-space that captures the highest variation in distribution patterns. The predictions generally outperformed those inferred from phylogenetic information. Our study demonstrates a strong link between genome and ecological niche and provides a conceptual framework for predictive ecology based on genomic data.