Cargando…
Emergence of Visual Center-Periphery Spatial Organization in Deep Convolutional Neural Networks
Research at the intersection of computer vision and neuroscience has revealed hierarchical correspondence between layers of deep convolutional neural networks (DCNNs) and cascade of regions along human ventral visual cortex. Recently, studies have uncovered emergence of human interpretable concepts...
Autores principales: | Mohsenzadeh, Yalda, Mullin, Caitlin, Lahner, Benjamin, Oliva, Aude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070097/ https://www.ncbi.nlm.nih.gov/pubmed/32170209 http://dx.doi.org/10.1038/s41598-020-61409-0 |
Ejemplares similares
-
Reliability and Generalizability of Similarity-Based Fusion of MEG and fMRI Data in Human Ventral and Dorsal Visual Streams
por: Mohsenzadeh, Yalda, et al.
Publicado: (2019) -
The perceptual neural trace of memorable unseen scenes
por: Mohsenzadeh, Yalda, et al.
Publicado: (2019) -
Effects of neuromodulation-inspired mechanisms on the performance of deep neural networks in a spatial learning task
por: Mei, Jie, et al.
Publicado: (2023) -
Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization
por: Golesorkhi, Mehrshad, et al.
Publicado: (2021) -
A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements
por: Mohsenzadeh, Yalda, et al.
Publicado: (2016)