Cargando…
State‐of‐the‐Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
Autores principales: | Sevakula, Rahul Kumar, Au‐Yeung, Wan‐Tai M., Singh, Jagmeet P., Heist, E. Kevin, Isselbacher, Eric M., Armoundas, Antonis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070211/ https://www.ncbi.nlm.nih.gov/pubmed/32067584 http://dx.doi.org/10.1161/JAHA.119.013924 |
Ejemplares similares
-
Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm
por: Au-Yeung, Wan-Tai M, et al.
Publicado: (2021) -
Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention
por: Kulkarni, Kanchan, et al.
Publicado: (2019) -
Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
por: Au-Yeung, Wan-Tai M., et al.
Publicado: (2019) -
Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
por: Bollepalli, Sandeep Chandra, et al.
Publicado: (2021) -
Clinical Potential of Beat‐to‐Beat Diastolic Interval Control in Preventing Cardiac Arrhythmias
por: Kulkarni, Kanchan, et al.
Publicado: (2021)