Cargando…

Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer

To enable exoskeleton wearers to walk on level ground, estimation of lower limb movement is particularly indispensable. In fact, it allows the exoskeleton to follow the human movement in real time. In this paper, the general regression neural network optimized by golden section algorithm (GS-GRNN) i...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Hualong, Li, Guanchao, Zhao, Xiaofei, Li, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070277/
https://www.ncbi.nlm.nih.gov/pubmed/32085505
http://dx.doi.org/10.3390/s20041104
Descripción
Sumario:To enable exoskeleton wearers to walk on level ground, estimation of lower limb movement is particularly indispensable. In fact, it allows the exoskeleton to follow the human movement in real time. In this paper, the general regression neural network optimized by golden section algorithm (GS-GRNN) is used to realize prediction of the human lower limb joint angle. The human body hip joint angle and the surface electromyographic (sEMG) signals of the thigh muscles are taken as the inputs of a neural network to predict joint angles of lower limbs. To improve the prediction accuracy in different gait phases, the plantar pressure signals are also added into the input. After that, the error between the prediction result and the actual data decreases significantly. Finally, compared with the prediction result of the BP neural network, GRNN shows splendid prediction performance for its less processing time and higher prediction accuracy.