Cargando…
Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer
To enable exoskeleton wearers to walk on level ground, estimation of lower limb movement is particularly indispensable. In fact, it allows the exoskeleton to follow the human movement in real time. In this paper, the general regression neural network optimized by golden section algorithm (GS-GRNN) i...
Autores principales: | Xie, Hualong, Li, Guanchao, Zhao, Xiaofei, Li, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070277/ https://www.ncbi.nlm.nih.gov/pubmed/32085505 http://dx.doi.org/10.3390/s20041104 |
Ejemplares similares
-
Research on Joint-Angle Prediction Based on Artificial Neural Network for Above-Knee Amputees
por: Yang, Jianyu, et al.
Publicado: (2021) -
Comparison of ARIMA, ES, GRNN and ARIMA–GRNN hybrid models to forecast the second wave of COVID-19 in India and the United States
por: Wang, Gang, et al.
Publicado: (2021) -
Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers
por: Chen, Tony Lin-Wei, et al.
Publicado: (2018) -
Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network
por: Lee, Taehoon, et al.
Publicado: (2021) -
Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton
por: Grimm, Florian, et al.
Publicado: (2016)