Cargando…
Detecting Respiratory Pathologies Using Convolutional Neural Networks and Variational Autoencoders for Unbalancing Data
The aim of this paper was the detection of pathologies through respiratory sounds. The ICBHI (International Conference on Biomedical and Health Informatics) Benchmark was used. This dataset is composed of 920 sounds of which 810 are of chronic diseases, 75 of non-chronic diseases and only 35 of heal...
Autores principales: | García-Ordás, María Teresa, Benítez-Andrades, José Alberto, García-Rodríguez, Isaías, Benavides, Carmen, Alaiz-Moretón, Héctor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070339/ https://www.ncbi.nlm.nih.gov/pubmed/32098446 http://dx.doi.org/10.3390/s20041214 |
Ejemplares similares
-
Evaluation of Country Dietary Habits Using Machine Learning Techniques in Relation to Deaths from COVID-19
por: García-Ordás, María Teresa, et al.
Publicado: (2020) -
Tasa de retorno y características asistenciales de pacientes mayores de 65 años en un servicio de Urgencias en Atención Primaria
por: Dehesa Fontecilla, Marta Alfonsa, et al.
Publicado: (2021) -
Feasibility of Social-Network-Based eHealth Intervention on the Improvement of Healthy Habits among Children
por: Benítez-Andrades, José Alberto, et al.
Publicado: (2020) -
A Semantic Social Network Analysis Tool for Sensitivity Analysis and What-If Scenario Testing in Alcohol Consumption Studies
por: Benítez-Andrades, José Alberto, et al.
Publicado: (2018) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021)