Cargando…

The Development of ASIC Type GSR Sensor Driven by GHz Pulse Current †

The GigaHertz spin rotation (GSR) effect was observed through the excitement of Giga Hertz (GHz) pulse current flowing through amorphous wire. The GSR sensor that was developed provides excellent features that enhanced magnetic sensitivity and sine functional relationship, as well as good linearity,...

Descripción completa

Detalles Bibliográficos
Autores principales: Honkura, Yoshinobu, Honkura, Shinpei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070394/
https://www.ncbi.nlm.nih.gov/pubmed/32074982
http://dx.doi.org/10.3390/s20041023
Descripción
Sumario:The GigaHertz spin rotation (GSR) effect was observed through the excitement of Giga Hertz (GHz) pulse current flowing through amorphous wire. The GSR sensor that was developed provides excellent features that enhanced magnetic sensitivity and sine functional relationship, as well as good linearity, absence of hysteresis, and low noise. Considering the GHz frequency range used for the GSR sensor, we assume that the physical phenomena associated with the operation of the sensor are based on spin reduction and rotation of the magnetization. The proper production technology needed was developed and a micro-sized GSR sensor was produced by directly forming micro coils on the surface of the application-specific integrated circuit (ASIC). Some prototypes of the ASIC type GSR sensor have been produced in consideration of applications such as automotive use, mobile device use, and medical use. Therefore, we can conclude that GSR sensors have great potential to become promising magnetic sensors for many applications.