Cargando…
Resource Usage and Performance Trade-offs for Machine Learning Models in Smart Environments
The application of artificial intelligence enhances the ability of sensor and networking technologies to realize smart systems that sense, monitor and automatically control our everyday environments. Intelligent systems and applications often automate decisions based on the outcome of certain machin...
Autores principales: | Preuveneers, Davy, Tsingenopoulos, Ilias, Joosen, Wouter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070423/ https://www.ncbi.nlm.nih.gov/pubmed/32093354 http://dx.doi.org/10.3390/s20041176 |
Ejemplares similares
-
A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces
por: Van hamme, Tim, et al.
Publicado: (2019) -
Deep Machine Learning Model Trade-Offs for Malaria Elimination in Resource-Constrained Locations
por: Eze, Peter U., et al.
Publicado: (2021) -
Utility–Privacy Trade-Off in Distributed Machine Learning Systems
por: Zeng, Xia, et al.
Publicado: (2022) -
Mallard resource selection trade‐offs in a heterogeneous environment during autumn and winter
por: Palumbo, Matthew D., et al.
Publicado: (2019) -
Energy efficiency trade-offs drive nucleotide usage in transcribed regions
por: Chen, Wei-Hua, et al.
Publicado: (2016)