Cargando…

Interactive, Multiscale Urban-Traffic Pattern Exploration Leveraging Massive GPS Trajectories

Urban traffic pattern reflects how people move and how goods are transported, which is crucial for traffic management and urban planning. With the development of sensing techniques, accumulated sensor data are captured for monitoring vehicles, which also present the opportunities of big transportati...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qi, Lu, Min, Li, Qingquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070530/
https://www.ncbi.nlm.nih.gov/pubmed/32079353
http://dx.doi.org/10.3390/s20041084
Descripción
Sumario:Urban traffic pattern reflects how people move and how goods are transported, which is crucial for traffic management and urban planning. With the development of sensing techniques, accumulated sensor data are captured for monitoring vehicles, which also present the opportunities of big transportation data, especially for real-time interactive traffic pattern analysis. We propose a three-layer framework for the recognition and visualization of multiscale traffic patterns. The first layer computes the middle-tier synopses at fine spatial and temporal scales, which are indexed and stored in a geodatabase. The second layer uses synopses to efficiently extract multiscale traffic patterns. The third layer supports real-time interactive visual analytics for intuitive explorations by end users. An experiment in Shenzhen on taxi GPS trajectories that were collected over one month was conducted. Multiple traffic patterns are recognized and visualized in real-time. The results show the satisfactory performance of proposed framework in traffic analysis, which will facilitate traffic management and operation.