Cargando…

A Novel Screening Strategy Reveals ROS-Generating Antimicrobials That Act Synergistically against the Intracellular Veterinary Pathogen Rhodococcus equi

Rhodococcus equi is a facultative intracellular pathogen that causes infections in foals and many other animals such as pigs, cattle, sheep, and goats. Antibiotic resistance is rapidly rising in horse farms, which makes ineffective current antibiotic treatments based on a combination of macrolides a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mourenza, Álvaro, Gil, José A., Mateos, Luís M., Letek, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070597/
https://www.ncbi.nlm.nih.gov/pubmed/32012850
http://dx.doi.org/10.3390/antiox9020114
Descripción
Sumario:Rhodococcus equi is a facultative intracellular pathogen that causes infections in foals and many other animals such as pigs, cattle, sheep, and goats. Antibiotic resistance is rapidly rising in horse farms, which makes ineffective current antibiotic treatments based on a combination of macrolides and rifampicin. Therefore, new therapeutic strategies are urgently needed to treat R. equi infections caused by antimicrobial resistant strains. Here, we employed a R. equi mycoredoxin-null mutant strain highly susceptible to oxidative stress to screen for novel ROS-generating antibiotics. Then, we used the well-characterized Mrx1-roGFP2 biosensor to confirm the redox stress generated by the most promising antimicrobial agents identified in our screening. Our results suggest that different combinations of antibacterial compounds that elicit oxidative stress are promising anti-infective strategies against R. equi. In particular, the combination of macrolides with ROS-generating antimicrobial compounds such as norfloxacin act synergistically to produce a potent antibacterial effect against R. equi. Therefore, our screening approach could be applied to identify novel ROS-inspired therapeutic strategies against intracellular pathogens.