Cargando…
Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification
Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070623/ https://www.ncbi.nlm.nih.gov/pubmed/32098092 http://dx.doi.org/10.3390/s20041188 |
_version_ | 1783506017800159232 |
---|---|
author | Zhang, Jianming Lu, Chaoquan Wang, Jin Yue, Xiao-Guang Lim, Se-Jung Al-Makhadmeh, Zafer Tolba, Amr |
author_facet | Zhang, Jianming Lu, Chaoquan Wang, Jin Yue, Xiao-Guang Lim, Se-Jung Al-Makhadmeh, Zafer Tolba, Amr |
author_sort | Zhang, Jianming |
collection | PubMed |
description | Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding modules at the inference stage. First, we propose a network training strategy of training with multi-size images. Then, we introduce more supervision information by triplet loss and design a branch for the triplet loss. In addition, dropout is introduced between the feature extractor and the classifier to avoid over-fitting. These modules only work at the training stage and will not bring about the increase in model parameters at the inference stage. We use Resnet18 as the baseline and add the three modules to the baseline. We perform experiments on three datasets: AID, NWPU-RESISC45, and OPTIMAL. Experimental results show that our model combined with the three modules is more competitive than many existing classification algorithms. In addition, ablation experiments on OPTIMAL show that dropout, triplet loss, and training with multi-size images improve the overall accuracy of the model on the test set by 0.53%, 0.38%, and 0.7%, respectively. The combination of the three modules improves the overall accuracy of the model by 1.61%. It can be seen that the three modules can improve the classification accuracy of the model without increasing model parameters at the inference stage, and training with multi-size images brings a greater gain in accuracy than the other two modules, but the combination of the three modules will be better. |
format | Online Article Text |
id | pubmed-7070623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70706232020-03-19 Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification Zhang, Jianming Lu, Chaoquan Wang, Jin Yue, Xiao-Guang Lim, Se-Jung Al-Makhadmeh, Zafer Tolba, Amr Sensors (Basel) Article Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding modules at the inference stage. First, we propose a network training strategy of training with multi-size images. Then, we introduce more supervision information by triplet loss and design a branch for the triplet loss. In addition, dropout is introduced between the feature extractor and the classifier to avoid over-fitting. These modules only work at the training stage and will not bring about the increase in model parameters at the inference stage. We use Resnet18 as the baseline and add the three modules to the baseline. We perform experiments on three datasets: AID, NWPU-RESISC45, and OPTIMAL. Experimental results show that our model combined with the three modules is more competitive than many existing classification algorithms. In addition, ablation experiments on OPTIMAL show that dropout, triplet loss, and training with multi-size images improve the overall accuracy of the model on the test set by 0.53%, 0.38%, and 0.7%, respectively. The combination of the three modules improves the overall accuracy of the model by 1.61%. It can be seen that the three modules can improve the classification accuracy of the model without increasing model parameters at the inference stage, and training with multi-size images brings a greater gain in accuracy than the other two modules, but the combination of the three modules will be better. MDPI 2020-02-21 /pmc/articles/PMC7070623/ /pubmed/32098092 http://dx.doi.org/10.3390/s20041188 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Jianming Lu, Chaoquan Wang, Jin Yue, Xiao-Guang Lim, Se-Jung Al-Makhadmeh, Zafer Tolba, Amr Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title | Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title_full | Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title_fullStr | Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title_full_unstemmed | Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title_short | Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification |
title_sort | training convolutional neural networks with multi-size images and triplet loss for remote sensing scene classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070623/ https://www.ncbi.nlm.nih.gov/pubmed/32098092 http://dx.doi.org/10.3390/s20041188 |
work_keys_str_mv | AT zhangjianming trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT luchaoquan trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT wangjin trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT yuexiaoguang trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT limsejung trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT almakhadmehzafer trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification AT tolbaamr trainingconvolutionalneuralnetworkswithmultisizeimagesandtripletlossforremotesensingsceneclassification |