Cargando…
Training Convolutional Neural Networks with Multi-Size Images and Triplet Loss for Remote Sensing Scene Classification
Many remote sensing scene classification algorithms improve their classification accuracy by additional modules, which increases the parameters and computing overhead of the model at the inference stage. In this paper, we explore how to improve the classification accuracy of the model without adding...
Autores principales: | Zhang, Jianming, Lu, Chaoquan, Wang, Jin, Yue, Xiao-Guang, Lim, Se-Jung, Al-Makhadmeh, Zafer, Tolba, Amr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070623/ https://www.ncbi.nlm.nih.gov/pubmed/32098092 http://dx.doi.org/10.3390/s20041188 |
Ejemplares similares
-
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
CLRS: Continual Learning Benchmark for Remote Sensing Image Scene Classification
por: Li, Haifeng, et al.
Publicado: (2020) -
Adaptive Discriminative Regions Learning Network for Remote Sensing Scene Classification
por: Tang, Chuan, et al.
Publicado: (2023) -
Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification
por: Huang, Wei, et al.
Publicado: (2023) -
Reusable Mesh Signature Scheme for Protecting Identity Privacy of IoT Devices
por: Gu, Ke, et al.
Publicado: (2020)