Cargando…

An Identity Authentication Method of a MIoT Device Based on Radio Frequency (RF) Fingerprint Technology

With the continuous development of science and engineering technology, our society has entered the era of the mobile Internet of Things (MIoT). MIoT refers to the combination of advanced manufacturing technologies with the Internet of Things (IoT) to create a flexible digital manufacturing ecosystem...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Qiao, Lin, Yun, Guo, Xinghao, Wang, Jin, AlFarraj, Osama, Tolba, Amr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070693/
https://www.ncbi.nlm.nih.gov/pubmed/32098444
http://dx.doi.org/10.3390/s20041213
Descripción
Sumario:With the continuous development of science and engineering technology, our society has entered the era of the mobile Internet of Things (MIoT). MIoT refers to the combination of advanced manufacturing technologies with the Internet of Things (IoT) to create a flexible digital manufacturing ecosystem. The wireless communication technology in the Internet of Things is a bridge between mobile devices. Therefore, the introduction of machine learning (ML) algorithms into MIoT wireless communication has become a research direction of concern. However, the traditional key-based wireless communication method demonstrates security problems and cannot meet the security requirements of the MIoT. Based on the research on the communication of the physical layer and the support vector data description (SVDD) algorithm, this paper establishes a radio frequency fingerprint (RFF or RF fingerprint) authentication model for a communication device. The communication device in the MIoT is accurately and efficiently identified by extracting the radio frequency fingerprint of the communication signal. In the simulation experiment, this paper introduces the neighborhood component analysis (NCA) method and the SVDD method to establish a communication device authentication model. At a signal-to-noise ratio (SNR) of 15 dB, the authentic devices authentication success rate (ASR) and the rogue devices detection success rate (RSR) are both 90%.