Cargando…
Playing with Structural Parameters: Synthesis and Characterization of Two New Maltol-Based Ligands with Binding and Antineoplastic Properties
Two maltol-based ligands, N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N′,N′-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070877/ https://www.ncbi.nlm.nih.gov/pubmed/32093219 http://dx.doi.org/10.3390/molecules25040943 |
Sumario: | Two maltol-based ligands, N,N′-bis((3-hydroxy-4-pyron-2-yl)methyl)-1,4-piperazine (L1) and N,N′,N′-tris((3-hydroxy-4-pyron-2-yl)methyl)-N-methylethylendiamine (L2), were synthesized and characterized. L1 and L2, containing, respectively, two and three maltol units spaced by a diamine fragment, were designed to evaluate how biological and binding features are affected by structural modifications of the parent compound malten. The acid-base behavior and the binding properties towards transition, alkaline-earth (AE) and rare-earth (RE) cations in aqueous solution, studied by potentiometric, UV-Vis and NMR analysis, are reported along with biological studies on DNA and leukemia cells. Both ligands form stable complexes with Cu(II), Zn(II) and Co(II) that were studied as metallo-receptors for AE and RE at neutral pH. L1 complexes are more affected than L2 ones by hard cations, the L1-Cu(II) system being deeply affected by RE. The structural modifications altered the mechanism of action: L1 partially maintains the ability to induce structural alterations of DNA, while L2 provokes single strand (nicks) and to a lesser extent double strand breaks of DNA. |
---|