Cargando…
Acoustic Indoor Localization Augmentation by Self-Calibration and Machine Learning
An acoustic transmitter can be located by having multiple static microphones. These microphones are synchronized and measure the time differences of arrival (TDoA). Usually, the positions of the microphones are assumed to be known in advance. However, in practice, this means they have to be manually...
Autores principales: | Bordoy, Joan, Schott, Dominik Jan, Xie, Jizhou, Bannoura, Amir, Klein, Philip, Striet, Ludwig, Hoeflinger, Fabian, Haering, Ivo, Reindl, Leonhard, Schindelhauer, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070902/ https://www.ncbi.nlm.nih.gov/pubmed/32093398 http://dx.doi.org/10.3390/s20041177 |
Ejemplares similares
-
Comparison of Direct Intersection and Sonogram Methods for Acoustic Indoor Localization of Persons
por: Schott, Dominik Jan, et al.
Publicado: (2021) -
Acoustic NLOS Identification Using Acoustic Channel Characteristics for Smartphone Indoor Localization
por: Zhang, Lei, et al.
Publicado: (2017) -
Exploiting Concurrent Wake-Up Transmissions Using Beat Frequencies
por: Kumberg, Timo, et al.
Publicado: (2017) -
Asynchronous Chirp Slope Keying for Underwater Acoustic Communication
por: Schott, Dominik Jan, et al.
Publicado: (2021) -
Simulation-Based Resilience Quantification of an Indoor Ultrasound Localization System in the Presence of Disruptions
por: Jain, Aishvarya Kumar, et al.
Publicado: (2021)