Cargando…
Use of Supervised Machine Learning for GNSS Signal Spoofing Detection with Validation on Real-World Meaconing and Spoofing Data—Part I †
The vulnerability of the Global Navigation Satellite System (GNSS) open service signals to spoofing and meaconing poses a risk to the users of safety-of-life applications. This risk consists of using manipulated GNSS data for generating a position-velocity-timing solution without the user’s system b...
Autores principales: | Semanjski, Silvio, Semanjski, Ivana, De Wilde, Wim, Muls, Alain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070933/ https://www.ncbi.nlm.nih.gov/pubmed/32093342 http://dx.doi.org/10.3390/s20041171 |
Ejemplares similares
-
Use of Supervised Machine Learning for GNSS Signal Spoofing Detection with Validation on Real-World Meaconing and Spoofing Data—Part II (†)
por: Semanjski, Silvio, et al.
Publicado: (2020) -
A Method of Detections’ Fusion for GNSS Anti-Spoofing
por: Tao, Huiqi, et al.
Publicado: (2016) -
GNSS Spoofing Network Monitoring Based on Differential Pseudorange
por: Zhang, Zhenjun, et al.
Publicado: (2016) -
Detection of Induced GNSS Spoofing Using S-Curve-Bias
por: Wang, Wenyi, et al.
Publicado: (2019) -
A Slowly Varying Spoofing Algorithm on Loosely Coupled GNSS/IMU Avoiding Multiple Anti-Spoofing Techniques
por: Gao, Yangjun, et al.
Publicado: (2022)