Cargando…
Standing-Posture Recognition in Human–Robot Collaboration Based on Deep Learning and the Dempster–Shafer Evidence Theory
During human–robot collaborations (HRC), robot systems must accurately perceive the actions and intentions of humans. The present study proposes the classification of standing postures from standing-pressure images, by which a robot system can predict the intended actions of human workers in an HRC...
Autores principales: | Li, Guan, Liu, Zhifeng, Cai, Ligang, Yan, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070947/ https://www.ncbi.nlm.nih.gov/pubmed/32093206 http://dx.doi.org/10.3390/s20041158 |
Ejemplares similares
-
Incomplete Information Management Using an Improved Belief Entropy in Dempster-Shafer Evidence Theory
por: Yang, Bin, et al.
Publicado: (2020) -
Dempster-Shafer Theory: Ηow Constraint Programming Can Help
por: Kaltsounidis, Alexandros, et al.
Publicado: (2020) -
A modified belief entropy in Dempster-Shafer framework
por: Zhou, Deyun, et al.
Publicado: (2017) -
Interval-valued belief entropies for Dempster–Shafer structures
por: Xue, Yige, et al.
Publicado: (2021) -
Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory
por: Li, Jiaming, et al.
Publicado: (2010)