Cargando…
A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure
Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration respo...
Autores principales: | Liu, Tongwei, Xu, Hao, Ragulskis, Minvydas, Cao, Maosen, Ostachowicz, Wiesław |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070993/ https://www.ncbi.nlm.nih.gov/pubmed/32075311 http://dx.doi.org/10.3390/s20041059 |
Ejemplares similares
-
Color Recurrence Plots for Bearing Fault Diagnosis
por: Petrauskiene, Vilma, et al.
Publicado: (2022) -
Permutation Entropy Based on Non-Uniform Embedding
por: Tao, Mei, et al.
Publicado: (2018) -
Damage Identification in Bridges by Processing Dynamic Responses to Moving Loads: Features and Evaluation
por: Zhu, Xiang, et al.
Publicado: (2019) -
New trends in structural health monitoring
por: Ostachowicz, Wieslaw, et al.
Publicado: (2013) -
Image Entropy for the Identification of Chimera States of Spatiotemporal Divergence in Complex Coupled Maps of Matrices
por: Smidtaite, Rasa, et al.
Publicado: (2019)