Cargando…
Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images
Estimated blind people in the world will exceed 40 million by 2025. To develop novel algorithms based on fundus image descriptors that allow the automatic classification of retinal tissue into healthy and pathological in early stages is necessary. In this paper, we focus on one of the most common pa...
Autores principales: | Colomer, Adrián, Igual, Jorge, Naranjo, Valery |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071097/ https://www.ncbi.nlm.nih.gov/pubmed/32069912 http://dx.doi.org/10.3390/s20041005 |
Ejemplares similares
-
Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema
por: Akram, Muhammad Usman, et al.
Publicado: (2020) -
Selfie fundus imaging for diabetic retinopathy screening
por: Kumari, Somya, et al.
Publicado: (2021) -
Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
por: Oh, Kangrok, et al.
Publicado: (2021) -
Comparison of Color Fundus Photography and Multicolor Fundus Imaging for Detection of Lesions in Diabetic Retinopathy and Retinal Vein Occlusion
por: Castro, Catarina, et al.
Publicado: (2023) -
CLRD: Collaborative Learning for Retinopathy Detection Using Fundus Images
por: Gao, Yuan, et al.
Publicado: (2023)