Cargando…
Hybrid Network with Attention Mechanism for Detection and Location of Myocardial Infarction Based on 12-Lead Electrocardiogram Signals
The electrocardiogram (ECG) is a non-invasive, inexpensive, and effective tool for myocardial infarction (MI) diagnosis. Conventional detection algorithms require solid domain expertise and rely heavily on handcrafted features. Although previous works have studied deep learning methods for extractin...
Autores principales: | Fu, Lidan, Lu, Binchun, Nie, Bo, Peng, Zhiyun, Liu, Hongying, Pi, Xitian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071130/ https://www.ncbi.nlm.nih.gov/pubmed/32074979 http://dx.doi.org/10.3390/s20041020 |
Ejemplares similares
-
A Novel Framework with High Diagnostic Sensitivity for Lung Cancer Detection by Electronic Nose
por: Lu, Binchun, et al.
Publicado: (2019) -
Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review
por: Xiong, Ping, et al.
Publicado: (2022) -
EvoMBN: Evolving Multi-Branch Networks on Myocardial Infarction Diagnosis Using 12-Lead Electrocardiograms
por: Liu, Wenhan, et al.
Publicado: (2021) -
The Effectiveness of Mobile Cloud 12-Lead Electrocardiogram Transmission System in Patients with ST-Segment Elevation Myocardial Infarction
por: Arinaga, Toyonori, et al.
Publicado: (2022) -
The relation of ST segment deviations in 12-lead conventional Electrocardiogram, right and posterior leads with the site of occlusion in acute inferior myocardial infarction
por: Karbalaie, Shahrokh, et al.
Publicado: (2014)